Nitrogen fixation does not axiomatically lead to phosphorus limitation in aquatic ecosystems

Author(s): van Gerven, L.P.A, Kuiper, J., Mooij, W.M.,
In: OIKOS, DOI: 10.1111/oik.05246
Year: 2018
Type: Journal / article
Theme affiliation: Stewardship
Link to centre authors: Kuiper, Jan
Full reference: van Gerven, L.P.A, Kuiper, J., Mooij, W.M., 2018. Nitrogen fixation does not axiomatically lead to phosphorus limitation in aquatic ecosystems. OIKOS, DOI: 10.1111/oik.05246


A long‐standing debate in ecology deals with the role of nitrogen and phosphorus in management and restoration of aquatic ecosystems. It has been argued that nutrient reduction strategies to combat blooms of phytoplankton or floating plants should solely focus on phosphorus (P). The underlying argument is that reducing nitrogen (N) inputs is ineffective because N2‐fixing species will compensate for N deficits, thus perpetuating P limitation of primary production. A mechanistic understanding of this principle is, however, incomplete. Here, we use resource competition theory, a complex dynamic ecosystem model and a 32‐year field data set on eutrophic, floating‐plant dominated ecosystems to show that the growth of non‐N2‐fixing species can become N limited under high P and low N inputs, even in the presence of N2 fixing species. N2‐fixers typically require higher P concentrations than non‐N2‐fixers to persist. Hence, the N2 fixers cannot deplete the P concentration enough for the non‐N2‐fixing community to become P limited because they would be outcompeted. These findings provide a testable mechanistic basis for the need to consider the reduction of both N and P inputs to most effectively restore nutrient over‐enriched aquatic ecosystems.


Stockholm Resilience Centre is a collaboration between Stockholm University and the Beijer Institute of Ecological Economics at the Royal Swedish Academy of Sciences

Stockholm Resilience Centre
Stockholm University, Kräftriket 2B
Phone: +46 8 674 70 70

Organisation number: 202100-3062
VAT No: SE202100306201